An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection
نویسندگان
چکیده
Psychophysical and neurophysiological evidence about the human visual system shows the existence of a mechanism, called surround suppression, which inhibits the response of an edge in the presence of other similar edges in the surroundings. A simple computational model of this phenomenon has been previously proposed by us, by introducing an inhibition term that is supposed to be high on texture and low on isolated edges. While such an approach leads to better discrimination between object contours and texture edges w.r.t. methods based on the sole gradient magnitude, it has two drawbacks: first, a phenomenon called self-inhibition occurs, so that the inhibition term is quite high on isolated contours too; previous attempts to overcome self-inhibition result in slow and inelegant algorithms. Second, an input parameter called ‘‘inhibition level’’ needs to be introduced, whose value is left to heuristics. The contribution of this paper is two-fold: on one hand, we propose a new model for the inhibition term, based on the theory of steerable filters, to reduce self-inhibition. On the other hand, we introduce a simple method to combine the binary edge maps obtained by different inhibition levels, so that the inhibition level is no longer specified by the user. The proposed approach is validated by a broad range of experimental results. & 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Contour detection improved by context-adaptive surround suppression
Recently, many image processing applications have taken advantage of a psychophysical and neurophysiological mechanism, called "surround suppression" to extract object contour from a natural scene. However, these traditional methods often adopt a single suppression model and a fixed input parameter called "inhibition level", which needs to be manually specified. To overcome these drawbacks, we ...
متن کاملContour and boundary detection improved by surround suppression of texture edges
We propose a computational step, called surround suppression, to improve detection of object contours and region boundaries in natural scenes. This step is inspired by the mechanism of non-classical receptive field inhibition that is exhibited by most orientation selective neurons in the primary visual cortex and that influences the perception of groups of edges or lines. We illustrate the prin...
متن کاملA Biologically Motivated Multiresolution Approach to Contour Detection
Standard edge detectors react to all local luminance changes, irrespective of whether they are due to the contours of the objects represented in a scene or due to natural textures like grass, foliage, water, and so forth. Moreover, edges due to texture are often stronger than edges due to object contours. This implies that further processing is needed to discriminate object contours from textur...
متن کاملPartial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملContour detection based on nonclassical receptive field inhibition
We propose a biologically motivated method, called nonclassical receptive field (non-CRF) inhibition (more generally, surround inhibition or suppression), to improve contour detection in machine vision. Non-CRF inhibition is exhibited by 80% of the orientation-selective neurons in the primary visual cortex of monkeys and has been shown to influence human visual perception as well. Essentially, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 44 شماره
صفحات -
تاریخ انتشار 2011